
A NEW APPROACH TO EXPERT SYSTEM

EXPLANATIONS

Regina Barzilayy, Daryl McCullough�, Owen Rambow�

Jonathan DeCristofaroz, Tanya Korelsky�, Benoit Lavoie�

� CoGenTex. Inc.
y Department of Computer Science, Columbia University

z Department of Computer Science, University of Delaware
Contact: owen@cogentex.com

1 Expert System Explanation

Expert systems were one of the �rst applications to emerge from initial research in arti�cial intel-

ligence, and the explanation of expert system reasoning was one of the �rst applications of natural

language generation.1 This is because the need for explanations is obvious, and generation from
a knowledge-based application such as reasoning should be relatively straightforward. However,

while explanation has been universally acknowledged as a desirable functionality in expert systems,

natural language generation has not taken a central place in contemporary expert system devel-

opment. For example, a popular text book about expert systems such as (Giarratano and Riley,

1994) stresses twice in the introduction the importance of explanation, but provides no further

mention of explanation in the remaining 600 pages. (The book is based on the popular CLIPS

framework.) In this paper, we present a new approach to providing an expert system with an

explanation facility. The approach comprises both software components and a methodology for

assembling the components. The methodology is minimally intrusive into existing expert system

development practice.

This paper is structured as follows. In Section 2, we discuss previous work and identify shortcom-

ings. We present our analysis of knowledge types in Section 3. In Section 4 present the Securioty

Assistant and its explanation facility. Finally, we sketch a general methodology for explainable

expert system engineering in Section 5.

1The work reported in this paper was carried out while all authors were at CoGenTex, Inc., and is in part supported
by contract F30602-96-C-0076 awarded by the Information Directorate of the Air Force Research Laboratory at the
Rome Research Site. We would like to thank Rob Flo, project engineer, for his support and feedback. We would also
like to thank Joe McEnerney for help in integrating the explanation facility with the SA, and Mike White and two
anonymous reviewers for useful comments.

1



2 Previous Work

A very important early result (based on experiences with explanation2 in systems such as MYCIN

(Shortli�e, 1976)) was the �nding that \reasoning strategies employed by programs do not form a

good basis for understandable explanations" (Moore, 1994, p.31). Speci�cally, simply paraphrasing

the chain of reasoning of the expert system does not let a human user easily understand that
reasoning.

Two separate approaches have been proposed to address this problem:

� In the Explainable Expert System (EES) approach (Swartout et al., 1991; Swartout and

Moore, 1993), the knowledge representation used by the expert system is enriched to include

explicit \strategic" knowledge, i.e., knowledge about how to reason, and domain-speci�c

knowledge. From this knowledge, the rules used by the expert system are compiled, and this

knowledge is also used to provide more abstract explanations of the system's reasoning.

� In the Reconstructive Explainer (Rex) approach (Wick, 1993), the expert system is un-

changed, but after it has performed its reasoning, a causal chain for explanation is constructed

from the input data to the conclusion reached previously by the expert system as a separate

process. The work of (Tanner et al., 1993) can also be seen as falling in this paradigm,

since a separate representation of knowledge (the \functional representation") is used only

for explanation, and the explanation must be specially derived from this.

These approaches have in common a preoccupation with a categorization of knowledge used in the

system into di�erent types. The Explainable Expert System concentrates on an abstract repre-

sentation of strategic knowledge (how does a particular action of the system relate to the overall
goal?) and on the representation of design rationale (why are actions reasonable in view of domain

goals?). In addition, there is terminological domain knowledge (de�nitions of terms). The Recon-

structive Explainer and related approaches have a representation of domain knowledge, along with

domain rule knowledge (mainly, causality), which is completely separate from that used by the

expert system itself. This knowledge is used to derive an \explanation path" through the domain

knowledge representation.

There are problems with both approaches. EES has not proven to be a fully satisfactory solution

to the problem of expert system explanation. The problem is that the writers of expert systems

have not been too quick or too eager to adopt frameworks such as EES. The requirement for a more

abstract representation of knowledge (from which the actual expert system rules are compiled) that

EES imposes may be considered onerous by the expert system developer, appearing unmotivated

from the point of view of the core functionality of the system, namely reasoning (as opposed to

explanation). Presumably, it is di�cult for one and the same person to be a domain expert and a

expert on communication in the domain.

2We do not consider explanation generation from data bases (for example, (McKeown, 1985; Paris, 1988; Lester
and Porter, 1997)) to be the same problem as expert system reasoning explanation (even though we may use some
similar techniques). In data base explanations, the knowledge is static and its representation is given a priori as part
of the problem statement. In expert system explanations, the knowledge to be explained is generated dynamically,
and the proper representation for this knowledge is part of the solution to the problem of expert system explanation,
not its statement.



In the Rex approach, the obvious problem is that in order to generate an explanation, additional

reasoning must be performed which in some sense is very similar to that done by the expert

system itself (e.g., �nding causal chains). This is redundant, and does not result in a clear sep-

aration between reasoning and explanation. While Wick (1993) argues against such a separation

on philosophical grounds, practical constraints suggest, as indicated above, that the domain expert

responsible for implementing the reasoning system should not also be responsible for implementing

the explanation capability, and that the communication engineer (responsible for implementing the

explanation facility) should not need to replicate domain reasoning.

In this paper, we present a new approach (system and methodology) to expert system explanation

which does not require the expert system writer to take into account the needs of the explanation

while writing the rules. At the same time, we avoid the necessity of having a separate domain

reasoning component for the explanation generation. Instead, the expert system is largely consid-

ered a stand-alone application, onto which explanation is added. However, this is done by having a

communication expert design a second knowledge representation (separate from the expert system's

domain knowledge representation) speci�cally for the purpose of communicating explanations. This
representation is populated by the expert system as it reasons, not post-hoc. Thus, no separate

reasoning facility is needed.

3 Types of Knowledge in Explanation

We follow previous work in distinguishing di�erent types of knowledge. However, we classify knowl-

edge by what it is used for and who is responsible for its engineering, not by its structure or contents.

Speci�cally, we distinguish three types of knowledge:

� Reasoning domain knowledge (RDK). This is the domain knowledge encoded by the

domain expert in the expert system proper. Typically, it includes terminological knowledge,
instance knowledge, and rules.

� Communication domain knowledge (CDK). This is knowldge about the domain which

is needed for communication about the domain.

� Domain communication knowledge (DCK). This is knowledge about how to communi-

cate in the domain.

The distinctions may at �rst seem overly �ne-grained. However, each type of knowledge is distin-

guished from the other types. CDK is domain knowledge, but it is only domain knowledge that
is needed for communication, not for reasoning. RDK and CDK of course overlap, but they are

not identical. This is in fact the lesson from much previous work in expert system explanation,

for example the work of Paris et al. (1988) contrasting \the line of reasoning" and \the line of

explanation", and the claim of Swartout et al. (1991) that the domain representation must be

augmented with additional knowledge about the domain and about reasoning in the domain.

CDK is di�erent from DCK in that CDK is knowledge about the domain as it is needed for com-

munication, but DCK is knowledge about how to communicate in that domain, and in a speci�c

communicative setting (characterized by factors as diverse as communication type or genre, hearer



needs, communication medium, or cultural context).3 DCK is not knowledge about the domain,

but about texts (or whatever the communicative medium is). For example, it may be expressed in

communicative plan operators which achieve goals related to the hearer's cognitive state, while do-

main knowledge would never include plan operators related to the hearer's cognitive state because

the hearer is not part of the domain.

CDK is not a new concept. Many researchers have identi�ed the need for packaging domain knowl-

edge di�erently for communication. For example, the \views" of Lester and Porter (1997) can be

seen as a form of CDK, though they are not a declarative representation. What is new in our work,

however, is the proposal that CDK should be represented explicitly in a distinct representation from

the domain knowledge. At CoGenTex, we have used an \Intermediate Knowledge Representation

Scheme" (IKRS) for representing CDK in several applications (Korelsky et al., 1993). The IKRS,

like the CDK used for explanation generation, is a declarative representation, and it was motivated

mainly from methodological and practical software engineering considerations.4

4 The Security Assistant

The Security Assistant or SA (Webber et al., 1998) is part of the DesignExpert tool (Ehrhart et al.,

1998), which helps software engineers analyze system-wide (or \non-functional") requirements such

as security, fault-tolerance, and human-computer interaction. The SA aids a software engineer in

choosing security measures to protect valuable system assets (e.g. important data) against likely

threats (e.g. disclosure or corruption). In the following three subsections, we discuss how the three

types of knowledge discussed in the previous section { RDK, CDK, and DCK, are represented and

used in the SA.

4.1 The Expert System: Reasoning Domain Knowledge

The SA �rst queries the user for information about entities of the system to be analyzed, such as

system assets, system components, and system sites, and the damage types that are of concern

for these entities. Additional damage types are inferred for each important asset of a system (e.g.
data can su�er from disclosure or corruption). The system then searches for defenses against these

damage types. If none can be found, the SA identi�es attack methods which can cause the damage,

3While DCK is domain- and genre-speci�c knowledge about how to communicate, we do not claim that the same
type of reasoner with di�erent domains (say, a expert system for car repair and a expert system for helicopter repair)
would necessarily require di�erent DCK. However, the type of expert system in the two cases might be very similar,
and it is this fact that would allow us to re-use the same DCK. Thus, from the point of view of the explanation
system, the \domain" is not the domain of the expert system, but the expert system itself. For a discussion of the
distinction between domain communication knowledge and domain-independent communication knowledge, and for
an argument in favor of the need for DCK, see (Kittredge et al., 1991).

4While CDK is closely related to content selection, it should not be reduced equated with content selection, which
is often seen as the �rst task in text planning (followed by content ordering). Content selection is entirely oriented
towards the anticipated act of communication, and hence de�ned by its parameters: what the communicative goal is,
what medium, who the hearer is, and other constraints (length of communication, and so on). CDK is a representation
of knowledge needed for content selection, but excludes all choices that depend on knowledge of the intended act of
communication. For example, CDK might include relative salience between domain objects, but does not include
information about how salient an object needs to be in order to interest the hearer. However, we admit that the
distinction may be less than cracklingly crisp, especially in implementations.



and identi�es enabling conditions for such attacks. It then attempts to �nd defenses that prevent

such situations. This reasoning can then be iterated. The result of the SA's reasoning is a list of

recommended defenses.

For example, suppose direct modi�cation by a malicious user has been identi�ed as a possible
damage to a system asset (say, a database), and that no immediate defense against direct modi�c-

taion is known (it is impossible to disable all editors). If the system has network connections, then

modi�cation is only possible after the user has gained illegal access to the system. In this case, we

would say that illegal access enables modi�ctaion. A defense against illegal access is therefore also

a defense against modi�cation.

The knowledge needed for reasoning is expressed in the usual manner as production rules which, if
the conditions are met, assert the existence of new damages, defenses, enabling conditions, and so

on.

4.2 The Content Representation Graph: Communication Domain Knowledge

Figure 1: The domain model

In SA, the starting point for expressing CDK is a domain model of the type that is used in object-

oriented design and analysis. Our domain model (Figure 1) represents security domain concepts,

various attributes and concept relationships, as they are used in explanation. The domain Model

was created by analyzing a small corpus of explanations of reasoning performed by the SA. The

corpus had been written by a domain expert, and was analyzed by a text engineer. Each of

the boxes in the model stands for a concept in the security domain, and inside these boxes are

attributes associated with the concept. Arrow-tipped edges represent relations between concepts in

the Knowledge Database, triangle-tipped edges represent is-a relations and diamond-tipped edges

are has-a relations. Some examples:



� Defense objects have id (name) and cost attributes;

� Damage objects have id, severity and type attributes;

� prevent is a relation that holds between a Defense instance and a Damage instance;

� Site, Asset and Location are di�erent sub-classes of ProtectedObject;

� A System consists of one or more System components.

This domain model has no role in the expert system reasoning. In fact, during the reasoning

process, the expert system models the relations as primary objects, and the concepts of our domain

model are merely slots of the relations in the expert system. As a result, the relations typically are

not binary, but n-ary. In contrast, the domain model contains only binary relations. This reects,

we claim, the di�erence between the optimal way of representing knowledge for machine reasoning,

and the way in which humans model the world (which is what the data model captures). As an

example of the di�erence in relations, the relation that corresponds to the data model's prevent

relation between Defense and Damage corresponds to, in the reasoning component, a quintary

relation between the defense, the location of the defense, the damage it prevents, the locations

at which it prevents the damage, and the damages that negate the defense. Another example is

the likely attack method relation (and its structural clone, the possible attack method relation) of
the reasoning component, which is a ternary relation between an asset, a location, and an attack

method. As can be seen from the domain model diagram, this relation is not modeled in the data

model at all.

Site

id: Ramstein

AttackMethod

type: illegal local login

prevents

.

.

-

?

-

? ??

�

?

6

Defense

id: Nondiscretionary
security measures.

associated
with Purpose

1

2

Damage

id: Illegal access

AttackMethod

type: Direct
modi�cation

Damage

type: substitution

id: fdplan

type: data asset

Asset

1

1 2

1

causes

enables

harms

harms

causes

1

Figure 2: The CRG for the example

Knowledge about domain concepts and relationships is not su�cient for generating an expressive

explanation. Additional CDK is required in order to select and organize content according to ex-



planation type and length limitation. The domain model is therefore augmented with the following

information.

� Importance level, which is de�ned for every relation and attribute. This information about

relative importance of attributes and relations enables us to produce explanations of di�erent

length. For example, the relation prevent between Defense and Damage has higher impor-
tance level than the relation have between SystemComponent and Mission. In our domain

model, we use a two-valued scale.

� A key attribute for each concept which is required in instances of the cocept and which

identi�es an instance of the concept. For example, id is a key attributes for Site but Hostili-

tyCharacteristic is not a key attribute.

� Mutual dependencies among concept relations and attributes. This information covers cases

in which a particular relation or attribute can be presented only if some other relations or at-

tributes are presented. For example, the relation prevent between Defense and AttackMethod

should be included only if the relation cause between AttackMethod and Damage is included

as well.

� Order among relations and order among attributes of the same concept, namely in what order

should relations of the concept be presented, e.g. for concept damage arc goal is ordered before

arc enable.

� Meta-relations between relations of the same concept. For example, there is a meta-relation

purpose between (Defense prevent damage) and (Defense required ProtectedObject).

To derive the CDK needed for a speci�c explanation task, the augmented domain model is in-

stantiated. While the reasoning component performs the reasoning proper, it also populates the

concepts of the augmented domain model with instances. The result is an instantiated model

that contains concept instances, and attributes bound to their values. We called this instantiated

model the \Content Representation Graph" (CRG) of the explanation. The CRG contains all

the information that is needed for the generation of the text. An example of a CRG is shown in

Figure 2.

4.3 Text Planning: Domain Communication Planning

As already mentioned, the CRG does not determine the form of the text, but only restricts its

content. We implemented two di�erent planners that build di�erent texts from the same CRG.

The �rst plan is intended to be used in an interactive setting, where the user can request more

information if he or she is interested in it, by clicking on hyperlinks. An example is shown in

Figure 3, where hyperlinks are shown by underlining.

In this application we used a planner with a declarative formalism for plan speci�cation, which

directly expresses the DCK (Lavoie and Rambow, 1998). Other representations of domain-specifc

text planning knowledge could also have been used, and we omit details of the formalism we used.

However, for the DesignExpert application it is also necessary to generate explanations that are free

of hypertext for inclusion in printed documents. These texts must include the entire explanation at



Nondiscretionary security measures are required on the Ramstein site.

� Which damage do nondiscretionary security measures prevent?

� Which assets do nondiscretionary security measures protect?

Figure 3: The interactive hypertext

Nondiscretionary security measures are required on the Ramstein site in order to prevent

substitution of data asset \ftdplan". They prevent substitution because nondiscretionary

security measures prevent illegal local login, which may enable illegal access to the Ramstein

system. Illegal access may enable direct modi�cation and direct modi�cation may cause
substitution to data asset \ftdplan".

Figure 4: The uent, hyperlink-free text

a level of detail appropriate for the kind of expected reader. An example is shown in Figure 4. In
order to create hyperlink-free explanation text, the CRG must be traversed according to constraints

at every nodes: which attributes to use to describe the object, which relations of this object with

other object must be presented in explanation, in what order to present the relations and what are

meta-relationship between them. The planner processes every graph edge according to speci�ed

order, and structures resulting phrases with respect to meta-relations.

5 Methodology

We propose the following methodology for developing an explainable expert system. We assume

three roles, that of the domain expert (where \domain" refers to the domain of the expert system,

such as computer security or infectious diseases), knowledge engineer (a specialist in eliciting and

representing domain models, speci�cally in the form of expert systems), and a communications

engineer (a specialist in analyzing and representing the knowledge needed for e�cient communica-

tion).

1. The knowledge engineer creates the expert system in consultation with the domain expert,

using any sort of tool or shell and any sort of methodology that are convenient.

2. The domain expert writes several instances of (textual) explanations of the type needed for

the application in question, based on scenarios that the expert system can handle.

3. The communication engineer analyzes the corpus of hand-written explanations along two

lines:



� The domain concepts that are reported in the text are analyzed and recorded using an

object-oriented modeling technique, perhaps augmented by more expressive constructs,

such as meta-relations (relations between relations). This structure, called the content

representation graph, represents the communication domain knowledge (both termino-

logical and instances).

� The structure of the text is recorded using some standard notation for discourse structure

(say, RST (Mann and Thompson, 1987)).

4. Using the communication domain knowledge representation, the communication engineer con-
sults with the domain expert and the knowledge engineer to de�ne a mapping from the domain

representation used by the expert system to the communication domain knowledge repre-

sentation devised by the communication engineer. The communication domain knowledge

representation may be modi�ed as a result.

5. The knowledge engineer adds rules to the expert system that instantiate the communication

domain knowledge representation with instances generated during the reasoning process.

6. The communication engineer designs a text planner that draws on the knowledge in the CDK

representation and produces text. This task involves the creation of an explicit representation

of DCK for the domain and task (and genre) at hand.

The resulting system is modular in terms of software modules. The expert system is preserved as a

stand-alone module (though its rule base has been somewhat extended to identify communication

domain knowledge), as is the text planner. Both module can be o�-the-shelf components. Only

the CDK representation is designed in a task-speci�c manner, but of course standard knowledge

representation tools can be used (Oracle, LOOM, etc.).

In addition, the methodology is modular in terms of tasks and expertise. The domain expert and

knowledge engineer do not need to learn about communication, and the communication engineer

does not need to understand the workings of the expert system (though she does need to understand

the domain well enough in order to design communication strategies for it, of course).

6 Conclusion

We have presented an approach to expert system explanation which is based on a classi�cation

of types of knowledge into reasoning domain knowledge, communication domain knowledge, and

domain communication knowledge. We have argued that this distinction, in addition to being

theoretically appealing, allows us to better manage the software engineering aspect of explainable

expert system development.

While we think that our approach is well suited to explaining the reasoning of expert systems to

users after the fact, the approach does not appear to lend itself very well to answers to \Why are you

asking?" type questions from the user (as opposed to \Why are you recommending this?", which is

what the SA answers). This is because the CDK is not intended to mimic the system's reasoning.

However, it may be possible to extend the CDK presentation to include a model (oriented towards

explanations for the human user) of the expert system itself. Using this model and the domain



model, such questions could be answered in the presented framework. We intend to investigate this

in future work.

Bibliography

Ehrhart, L. S., Korelsky, T., McCullough, D., McEnerney, J., Overmyer, S., Rambow, O., Webber, F.,
Flo, R., and White, D. (1998). DesignExpert: A knowledge-based tool for developing system-wide
properties. Submitted.

Giarratano, J. and Riley (1994). Expert Systems: Principles and Programming. PWS Publishing Company,
Boston.

Kittredge, R., Korelsky, T., and Rambow, O. (1991). On the need for domain communication knowledge.
Computational Intelligence, 7(4).

Korelsky, T., McCullough, D., and Rambow, O. (1993). Knowledge requirements for the automatic genera-
tion of project management reports. In Proceedings of the 6th Conference for Knowledge-Based Software
Engineering (KBSE93). IEEE.

Lavoie, B. and Rambow, O. (1998). A framework for customizable generation of multi-modal presentations.
In 36th Meeting of the Association for Computational Linguistics (ACL'98), Montr�eal, Canada. ACL.

Lester, J. C. and Porter, B. W. (1997). Developing and empirically evaluating robust explanation generators:
The knight experiments. Computational Linguistics, 23(1):65{102.

Mann, W. C. and Thompson, S. A. (1987). Rhetorical Structure Theory: A theory of text organization.
Technical Report ISI/RS-87-190, ISI.

McKeown, K. (1985). Text Generation. Cambridge University Press, Cambridge.

Moore, J. (1994). Participating in Explanatory Dialogues. MIT Press.

Paris, C., Wick, M., and Thompson, W. (1988). The line of reasoning versus the line of explanation. In
Proceedings of the 1988 AAAI Workshop on Explanation, pages 4{7.

Paris, C. L. (1988). Tailoring object descriptions to a user's level of expertise. Computational Linguistics,
14(3):64{78.

Shortli�e, E. H. (1976). Computer-Based Medical Consultations: Mycin. American Elsevier, New York.

Swartout, W. and Moore, J. (1993). Explanation in second generation expert systems. In David, J.-M.,
Krivine, J.-P., and Simmons, R., editors, Second Generation Expert Systems, pages 543{585. Springer
Verlag.

Swartout, W., Paris, C., and Moore, J. (1991). Design for explainable expert systems. IEEE Expert,
6(3):59{64.

Tanner, M. C., Keunecke, A. M., and Chandrasekaran, B. (1993). Explanation using task structure and
domain functional models. In David, J.-M., Krivine, J.-P., and Simmons, R., editors, Second Generation
Expert Systems, pages 586{613. Springer Verlag.

Webber, F., McEnerney, J., and Kwiat, K. (1998). The DesignExpert approach to developing fault-tolerant
and secure systems. In 4th Int'l Conf. on Reliability and Quality in Design.

Wick, M. R. (1993). Second generation expert system explanation. In David, J.-M., Krivine, J.-P., and
Simmons, R., editors, Second Generation Expert Systems, pages 614{640. Springer Verlag.


