
Text Polishing:
Surface-Oriented Smoothing of Generated Text via

Markup-Based Revision Rules

Michael White
CoGenTex, Inc.

The Village Green
840 Hanshaw Road, Ithaca, NY 14850, USA

mike@cogentex.com

Abstract
In this paper, we introduce text polishing, a novel,
surface-oriented approach to using revisions in nat-
ural language generation in order to improve the flu-
ency of generated texts. In this approach, markup-
based revision rules are used to implement sentence
planning operations such as aggregation, referring
expression generation and discourse marker inser-
tion. By working close to the surface, we suggest
that it becomes easier to partially automate the ac-
quisition of revision rules, and that it becomes pos-
sible to improve the scalability of template-based
generation systems. We describe our current imple-
mentation, including an initial evaluation of a tool
for bootstrapping revision rules from examples, and
conclude with a discussion of related work.

1 Introduction
In this paper, we introduce text polishing, a novel,
surface-oriented approach to using revisions in nat-
ural language generation in order to improve the flu-
ency of generated texts. In this approach, markup-
based revision rules are used to implement sentence
planning operations such as aggregation, referring
expression generation and discourse marker inser-
tion.1 In contrast to previous approaches to using
revisions in sentence planning (Rambow and Korel-
sky, 1992; Robin, 1994; Wanner and Hovy, 1996;
Callaway and Lester, 1997), where abstract text
structures are transformed prior to being sent to a
surface realizer, our surface-oriented approach as-
sumes essentially concrete texts2 as input, which
however include enough XML markup — encod-
ing (partially) rhetorical, referential, semantic and

1Since sentence planning (or microplanning) is normally
conceived of as bridging the gap between text planning and
surface realization (Reiter and Dale, 2000), and since our
markup-based revision rules are not strictly limited to im-
plementing sentence planning operations, we decided to in-
troduce the new term text polishing.

2By essentially concrete texts, we mean texts that at most
need only some morphological synthesis and orthographic
processing (including sentence-initial capitalization, sentence-
final periods, and insertion of white space sensitive to punctu-
ation) for completion, unlike the sentence specifications that
form the inputs to surface realizers.

morpho-syntactic structure — to enable the revision
rules to operate.

We see two principal advantages to our surface-
oriented approach. First, working close to the sur-
face makes it easier to partially automate the acqui-
sition of revision rules. To that end, we have de-
veloped a tool for bootstrapping revision rules from
examples. The bootstrapping tool generates revision
rules that are guaranteed to transform each source
XML tree into its target XML tree counterpart. The
rule designer can then focus on the more interesting
task of generalizing such rules to cover the desired
range of cases. In an initial evaluation, we found that
67 percent of the desired rule actions could be ob-
tained from the bootstrapped versions. Since man-
ually writing an initial version of a revision rule for
a source and target pair is a tedious and error-prone
process, we consider this figure to be a lower bound
on the labor savings.

The second principal advantage of our approach
is that it provides a way to improve the scalabil-
ity of NLG systems that make use of generalized
templates3 (Busemann, 1996; Geldof and de Velde,
1997; Busemann and Horacek, 1998; White and
Caldwell, 1998; Pianta and Tovena, 1999; Cawsey,
2000). With all template-based approaches, as the
amount of desired variation increases, it can become
difficult to deal with all possible ways in which frag-
ments can be juxtaposed. Adding a text polishing
component can simplify the task of specifying the
templates, which need only deal with canonical con-
texts as long as the text polisher can be relied upon
to smooth away any problems with stilted or awk-
ward juxtapositions.

The rest of the paper is organized as follows. In
Section 2, we describe how the approach can im-
prove the scalability of template-based systems and
provide a pair of illustrative revisions. In Section 3,
we describe the tool for bootstrapping revision rules
from examples, and provide an initial evaluation of

3By generalized templates we mean techniques that make
use of canned text but go beyond simple fill-in-the-blank pro-
cessing; as an example, cf. the recursive template-filling ca-
pability of XSLT (W3C, 1999b).

this tool. In Section 4, we conclude with a discussion
related work.

2 The Approach

To date, generalized template–based generation sys-
tems have included relatively little in the way of lin-
guistic annotation in their output, and thus linguis-
tic post-processing has tended to be limited as well.
Consequently, tasks such as sentence aggregation,
referring expression generation, and insertion of dis-
course markers are often folded into the initial text
structuring component, rather than taking place in a
separate sentence planning (or microplanning) com-
ponent, as is usually the case in systems employing
more complex machinery (Reiter and Dale, 2000).
We will show that by including more linguistic an-
notation, it becomes possible to perform such oper-
ations in a separate component, while still working
with essentially concrete texts in the template frag-
ments.

To illustrate, let us consider an example from a
natural language interface to a personal information
manager, which we have partially implemented to
test out our approach. Suppose that the system is
asked to summarize the appointments and tasks for
a certain period. In this context, consider the two
possible outputs below:

(1) There are three appointments scheduled for
this period. There is one task scheduled for
this period. All of the appointments are Nor-
mal priority. The task is High priority. . . .

(2) There are two appointments scheduled for
this period. Both of the appointments are
Normal priority. . . .

While the outputs shown in (1) and (2) can be gen-
erated relatively straightforwardly by a generalized
template–based system, the results are somewhat
stilted, and certainly less fluent than those in (3)
and (4):

(3) There are three appointments and one task
scheduled for this period. All of the appoint-
ments are Normal priority, whereas the task
is High priority. . . .

(4) There are two appointments scheduled for
this period, both of which are Normal prior-
ity. . . .

One way to achieve the more fluent results would be
to add new templates, for example including a sep-
arate template for introducing both appointments
and tasks in a single sentence, as in (3), vs. just a
single template for introducing either appointments
or tasks in separate sentences, as in (1) and (2). Of
course, a drawback of this method is that the num-
ber of templates necessary to achieve the desired re-

<seg role="totals-by-type">

<sent rhet="list">

<clause>

<expl>there</expl>

<aux lex="be" num="3"/>

<np def="-" num="3" rel="sbj"

ref="the-appt(s)">

<card num="3"/>

<n lex="appointment" num="3"/>

</np>

<v>scheduled</v>

<pp>for this period</pp>

</clause>

</sent>

<sent rhet="list">

<clause>

<expl>there</expl>

<aux lex="be" num="1"/>

<np def="-" num="1" rel="sbj"

ref="the-task(s)">

<card num="1"/>

<n lex="task" num="1"/>

</np>

<v>scheduled</v>

<pp>for this period</pp>

</clause>

</sent>

</seg>

Figure 1: Text with markup for (1)

sults can become unmanageable as the level of vari-
ation increases.

2.1 Adding XML Markup
Rather than trying to anticipate all possible juxta-
positions in advance, text polishing can be used to
smooth texts such as (1) and (2) into the more flu-
ent versions (3) and (4), as long as the template-
based part of the system includes XML markup suf-
ficient to enable the text polisher’s revision rules.
This should simplify the overall task of specifying
the templates, since including markup in the tem-
plates should be easier than handling a proliferation
of cases.

In order to employ the text polishing approach,
one must determine how much and what kinds of
markup to include to enable the revision rules. Here
there is a tradeoff to be considered between using
a minimal amount of markup, to reduce effort, and
using a consistent markup scheme, to enable more
general revision rules. In our experience so far, we
have found it useful to include markup for parts-
of-speech and major syntactic constituents, referen-
tial identity and rhetorical structure. We suspect
it will additionally prove useful to include more se-
mantic markup in certain cases (perhaps via cross-
reference to a semantic structure). On the other
hand, it is also possible to make do with less markup

<sent role="totals-by-type">

<clause>

<expl>there</expl>

<aux lex="be" num="2"/>

<np def="-" num="2"

ref="the-appt(s)" rel="sbj">

<card num="2"/>

<n lex="appointment" num="2"/>

</np>

<v>scheduled</v>

<pp>for this period</pp>

</clause>

</sent>

<sent rhet="elab-obj-attr" role="priorities">

<clause>

<np def="+" num="2" rel="sbj">

<det>both</det>

<prep>of</prep>

<np def="+" num="pl"

ref="the-appt(s)" rel="obj">

<det>the</det>

<n lex="appointment" num="pl"/>

</np>

</np>

<v lex="be" num="2"/>

<np num="sg" rel="obj">

<adj>Normal</adj>

<n>priority</n>

</np>

</clause>

</sent>

Figure 2: Text with markup for (2)

<sent role="totals-by-type">

<clause>

<expl>there</expl>

<aux lex="be" num="pl"/>

<np def="-" num="pl" rel="sbj"

ref="the-appt(s)-the-task(s)">

<np def="-" num="3" rel="sbj"

ref="the-appt(s)" rhet="list-e">

<card num="3"/>

<n lex="appointment" num="3"/>

</np>

<conj>and</conj>

<np def="-" num="1" rel="sbj"

ref="the-task(s)" rhet="list-e">

<card num="1"/>

<n lex="task" num="1"/>

</np>

</np>

<v>scheduled</v>

<pp>for this period</pp>

</clause>

</sent>

Figure 3: Text with markup for (3)

<sent role="totals-by-type">

<clause>

<expl>there</expl>

<aux lex="be" num="2"/>

<np def="-" num="2" rel="sbj"

ref="the-appt(s)">

<card num="2"/>

<n lex="appointment" num="2"/>

</np>

<v>scheduled</v>

<pp>for this period</pp>

</clause>

<punct>,</punct>

<clause rhet="elab-obj-attr-e"

role="priorities">

<np def="+" num="2" rel="sbj">

<det>both</det>

<prep>of</prep>

<relpro def="+" num="pl" rel="obj"

ref="the-appt(s)">which</relpro>

</np>

<v lex="be" num="2"/>

<np num="sg" rel="obj">

<adj>Normal</adj>

<n>priority</n>

</np>

</clause>

</sent>

Figure 4: Text with markup for (4)

for some applications, especially if the revision rules
are primarily for modifying subsequent references.
Figures 1–4 show an indicative level of markup for
the first two sentences of examples (1) and (2) and
the corresponding first sentences of examples (3) and
(4).

2.2 Markup-Based Revisions
In our current implementation, the text polishing
component manages a prioritized list of revision
rules, using a simple greedy algorithm where match-
ing rules are executed in priority order until no fur-
ther matches are found (or until a maximum num-
ber of iterations is reached, to prevent infinite loops
if the rules erroneously lead to cycles). Each revi-
sion rule (or edit rule) consists of an XML structure
matching condition paired with a list of actions (ed-
its) to execute, plus an optional list of new elements
to be inserted by some of the actions. Two sample
rules are shown in Figures 5 and 6, and discussed at
the end of this section.

The XML structure matching conditions may con-
tain literal element, attribute and text matching
conditions as well as more powerful matching con-
ditions that make use of the XPath (W3C, 1999a)
subset of XSLT (W3C, 1999b).4 Matched elements

4Our current implementation was inspired by an

<!-- combine adjacent sentences in
totals-by-type section -->

<edit-rule name="combineTotalsByType">
<match>

<seg erc:name="d0" role="totals-by-type">
<sent erc:name="n1" rhet="list">

<clause erc:name="n2">
<expl erc:name="n3">there</expl>
<aux erc:name="n4" lex="be"/>
<np erc:name="n5" ref="the-appt(s)"/>
<v erc:name="n8"/>

</clause>
</sent>
<sent erc:name="d1" rhet="list">

<np erc:path="$d1/clause/*" erc:name="n10"
ref="the-task(s)"/>

</sent>
</seg>

</match>
<new-elements>

<np def="-" erc:name="i0" num="pl"
ref="the-appt(s)-the-task(s)" rel="sbj"/>

<conj erc:name="i1">and</conj>
</new-elements>
<edits><![CDATA[

XmlUtils.stripElement(d0);
XmlUtils.removeNode(d1);
XmlUtils.insertAfter(i0,n4);
XmlUtils.insertAfter(i1,n5);
XmlUtils.insertNodeAndFollowingSiblingsUnder(n5,i0);
XmlUtils.insertNodeAndFollowingSiblingsAfter(n8,i0);
XmlUtils.insertAfter(n10,i1);
XmlUtils.copyAttributes(d0,n1);
n1.removeAttribute("rhet");
n4.setAttribute("num","pl");
n5.setAttribute("rhet","list-e");
n10.setAttribute("rhet","list-e");

]]></edits>
</edit-rule>

Figure 5: Revision rule for (1) to (3)

<!-- combine adjacent mono-clausal sentences
in elab-obj-attr relation -->

<edit-rule name="relativizeElabObjAttr">
<match>

<sent erc:name="n1" erc:cond="count(clause)=1">
<clause erc:name="n2">

<np erc:path="$n2/*" erc:name="n5"
ref="?ref" rel="sbj"/>

</clause>
</sent>
<sent erc:name="d0" rhet="elab-obj-attr"

erc:cond="count(clause)=1">
<clause erc:name="n10">

<np erc:path="$n10//*" erc:name="n14"
def="+" ref="?ref"/>

</clause>
</sent>

</match>
<new-elements>

<punct erc:name="i0">,</punct>
</new-elements>
<edits><![CDATA[

XmlUtils.stripElement(d0);
XmlUtils.insertAfter(i0,n2);
XmlUtils.insertAfter(n10,i0);
n14 = XmlUtils.changeTagName(n14,"relpro");
XmlUtils.setSingleTextChildData(n14,"which");
XmlUtils.copyAttributes(d0,n10);
n10.setAttribute("rhet","elab-obj-attr-e");

]]></edits>
</edit-rule>

Figure 6: Revision rule for (2) to (4)

are given names via the erc:name attribute (the
namespace erc, for edit rules compiler, serves to
distinguish special matching attributes from literal
ones). The XPath-based matching conditions are as
follows:

flexible path conditions By default, in order for
an element in an XML tree to match an element
in the matching condition, it must appear in the
same relative location to the preceding element
— that is, as either the next sibling or first child
of the preceding sibling or parent, respectively.
This constraint may be relaxed by providing
an explicit path condition via the erc:path at-
tribute. For example, the path $d1/clause/*
given for the np element named n10 in Figure 5
— i.e., the NP which is extracted from the sec-
ond sentence and coordinated with the subject
of the first sentence — allows this element to
appear as a child of a (the) clause child of ele-
ment d1, rather than requiring it to be d1’s first
child.

boolean XPath conditions Further conditions
on an element may be specified via the
erc:cond attribute, whose value may be any
boolean XPath expression. For example,
in Figure 6, the sent element named n1 is
required to contain exactly one clause child.

variable attribute and text matching Two or
more attributes or text nodes may be required
to have matching values, rather than the same
literal values. For example, in Figure 6, the
NP elements n5 and n14 are required to have
matching ref attributes.

The actions to execute to perform an edit opera-
tion are written in Java and make use of references
to the named elements. The available actions are
those in the XML Document Object Model (DOM)
specification (W3C, 2000) plus a set of convenience
routines that we have written using these APIs in
the class XmlUtils.

Since our text polishing approach does not require
the XML markup to fully encode all potentially use-
ful structure, the revision rules tend to be mostly
application-specific. The combineTotalsByType
rule shown in Figure 5 is an example of an
application-specific rule. This rule is restricted
to adjacent sentences in a segment whose role
in the text has the application-specific value
totals-by-type. Given the limited range of cases
that this rule is intended to match, it may safely
make use of various simplifying assumptions in the
matching condition and list of actions. For instance,

earlier implementation that made use of XML-QL
(http://www.w3.org/TR/NOTE-xml-ql), a query language
for XML.

there is no need to check whether coordinating the
subject NPs could lead to a collective/distributive
ambiguity, or whether deleting all but the subject
NP in the second sentence could lose important in-
formation.

The relativizeElabObjAttr rule shown in Fig-
ure 6 is an example of a rule intended to have broader
applicability. It applies to adjacent sentences in the
elab-obj-attr relation, i.e. the elaboration-object-
attribute subtype of the elaboration relation from
Rhetorical Structure Theory (Mann and Thompson,
1988). Since this rule is restricted to mono-clausal
sentences — in order to keep the resulting syntactic
complexity under control — and since its actions are
essentially limited to appending the second clause
and introducing a relative prononoun, it embodies
considerably fewer simplifying assumptions than the
combineTotalsByType rule. Nevertheless, of course,
for a specific system it may be necessary to further
restrict this rule to avoid unwanted invocations.

3 Bootstrapping Revision Rules

In order to speed up the process of writing revision
rules, we have developed a tool for bootstrapping
them from examples. This tool takes as an input a
source and a target XML file along with the name
of the desired rule, and produces as output a re-
vision rule that will transform the source into the
target. The rule designer can then generalize the
bootstrapped rule to cover the desired range of cases.

An example bootstrapped rule appears in Fig-
ure 7, which will transform the XML in Figure 1
into the XML in Figure 3. In the previous section,
we saw a manually generalized version of this rule
in Figure 5. In the generalized version, the match-
ing condition has been simplified, and the deletion
of individual elements from the second sentence has
been generalized to deleting all of the second sen-
tence except for the extracted NP.

3.1 Algorithm

The bootstrapping tool operates in two phases. In
the first phase, the source and target XML trees
are aligned. The alignment consists of a map-
ping between source and target elements, where un-
mapped elements are considered to be deleted from
the source tree or inserted in the target tree. The
alignment also indicates which elements have been
changed — i.e., which elements have differing tag
names, attributes or text contents — as well as which
elements have been moved from their expected loca-
tion, where the expected location is calculated rel-
ative to an element’s preceding sibling or parent, if
none. In the bootstrapping tool’s second phase, the
alignment is used to generate an edit rule. In the
generated rule, the matching condition is simply a
literal match on the source tree, the new elements

<edit-rule name="combineTotalsByType">
<match>

<seg erc:name="d0" role="totals-by-type">
<sent erc:name="n1" rhet="list">

<clause erc:name="n2">
<expl erc:name="n3">there</expl>
<aux erc:name="n4" lex="be" num="3"/>
<np def="-" erc:name="n5" num="3"

ref="the-appt(s)" rel="sbj">
<card erc:name="n6" num="3"/>
<n erc:name="n7" lex="appointment" num="3"/>

</np>
<v erc:name="n8">scheduled</v>
<pp erc:name="n9">for this period</pp>

</clause>
</sent>
<sent erc:name="d1" rhet="list">

<clause erc:name="d2">
<expl erc:name="d3">there</expl>
<aux erc:name="d4" lex="be" num="1"/>
<np def="-" erc:name="n10" num="1"

ref="the-task(s)" rel="sbj">
<card erc:name="n11" num="1"/>
<n erc:name="n12" lex="task" num="1"/>

</np>
<v erc:name="d5">scheduled</v>
<pp erc:name="d6">for this period</pp>

</clause>
</sent>

</seg>
</match>
<new-elements>

<np def="-" erc:name="i0" num="pl"
ref="the-appt(s)-the-task(s)" rel="sbj"/>

<conj erc:name="i1">and</conj>
</new-elements>
<edits><![CDATA[

XmlUtils.stripElement(d0);
XmlUtils.stripElement(d1);
XmlUtils.stripElement(d2);
XmlUtils.removeNode(d3);
XmlUtils.removeNode(d4);
XmlUtils.removeNode(d5);
XmlUtils.removeNode(d6);
XmlUtils.insertAfter(i0,n4);
XmlUtils.insertAfter(i1,n5);
XmlUtils.insertNodeAndFollowingSiblingsUnder(n5,i0);
XmlUtils.insertNodeAndFollowingSiblingsAfter(n8,i0);
XmlUtils.insertNodeAndFollowingSiblingsAfter(n10,i1);
n1.removeAttribute("rhet");
n4.setAttribute("num","pl");
n1.setAttribute("role","totals-by-type");
n5.setAttribute("rhet","list-e");
n10.setAttribute("rhet","list-e");

]]></edits>
</edit-rule>

Figure 7: Bootstrapped rule for (1) to (3)

are those considered inserted by the alignment, and
the actions are derived from the alignment in the
order deletes, inserts, moves, and changes.

For the tree alignment algorithm, we considered
using an optimal tree edit distance algorithm such as
(Zhang and Shasha, 1989) or (Klein et al., 2000), but
found them unsuitable because they require domi-
nance relationships to be preserved in the source and
target trees.5 The reason this dominance require-
ment is problematic in the context of bootstrapping

5We also looked at the approach to aligning structured
multilingual documents of (Ballim et al., 1998), but it did not
appear suitable for the sort of fine-grained alignment needed
here.

revision rules is that cases of moved constituents
— such as the NP which is moved from the second
sentence in Figure 1 into the coordinate subject of
the first sentence in Figure 3 — will necessarily be
treated as cases of deletion and insertion, which will
not generalize properly.

Having not found a suitable existing algorithm,6
we devised a new dynamic programming alignment
algorithm that performs a top-down, bidirectional
beam search for the least cost mapping between the
source and target XML trees. The algorithm is pa-
rameterized by functions for computing the costs of
deletes, inserts, moves and changes.

3.2 Initial Evaluation
To perform an initial evaluation of the bootstrap-
ping tool, we set out to recreate the seven revision
rules that were originally written by hand for the
test application discussed in Section 2, from source
and target examples such as those shown in Fig-
ures 1–4. After setting the cost functions for the
tree alignment algorithm analytically, and with al-
most no tweaking, we were pleased to find that all
the source and target trees were aligned correctly.
We then ran the bootstrapping tool on the example
pairs and generalized the resulting rules to recreate
the functionality of the original rules. At this point
we counted the number of actions in the generalized
rules that came from the bootstrapped versions, and
found that 29 out of 43, or 67 percent, of the de-
sired actions were generated by the bootstrapping
tool. As mentioned in the introduction, we consider
this figure to be a lower bound on the labor savings,
since manually writing a revision rule for a source
and target pair is a tedious and error-prone process.

To date we have employed our text polishing ap-
proach in one commercial and one research proto-
type.7 Since these prototypes are still in their early
stages, we have yet to evaluate the success of the
bootstrapping tool with these systems.

4 Discussion
We view our bootstrapping tool as a first step in
the direction of inducing revision rules for handling
sentence planning tasks such as sentence aggrega-
tion, referring expression generation, and insertion
of discourse markers. Of these, we consider our
approach to be particularly apt for sentence aggre-
gation, since, as Reiter and Dale (2000) point out,
the contexts in which various aggregation operations
are appropriate are highly application-dependent;
moreover, research on aggregation in NLG, such as
(Shaw, 1998), is still in its early stages, having yet

6We have not investigated adapting general purpose graph
matching algorithms, such as the relaxation-based approach
of (Gold and Rangarajan, 1996).

7The research prototype is part of the RIPTIDES system
(http://www.cs.cornell.edu/Info/People/cardie/tides/).

to have made extensive use of the considerable work
in theoretical linguistics in this area.

In comparison to other revision-based approaches,
we have argued in favor of sticking close to the sur-
face. However, technically, nothing prevents our ap-
proach from being used in conjunction with a sur-
face realizer, such as RealPro (Lavoie and Ram-
bow, 1997) — our revision rules could just as easily
be used to transform syntactic specifications as long
as they were encoded in XML. Indeed, this could
make certain revisions simpler or easier to general-
ize, as we have found to be the case with delaying
some morphological synthesis and orthographic pro-
cessing. One reason for preferring essentially con-
crete texts is that it reduces the need to reverse
engineer abstract specifications for desired surface
forms. Another reason is that in dealing with inter-
acting linguistic phenomena, we prefer to work with
concrete representations encoding information from
various levels, rather than representations that ab-
stract away from details such as word order. This
use of information from various levels represents a
similar departure from the traditional pipeline ar-
chitecture as in (Mellish et al., 2000).

Acknowledgements
The author gratefully acknowledges Ted Caldwell,
Benoit Lavoie, Tanya Korelsky, Owen Rambow, Jo-
hanna Moore and Helmut Horacek for helpful discus-
sion. This work was partially supported by DARPA
TIDES contract N66001-00-C-8009.

References
A. Ballim, G. Coray, A. Linden, and C. Vanoir-

beek. 1998. The Use of Automatic Alignment
on Structured Multilingual Documents. In R. D.
Hersch, J. André, and H. Brown, editors, Elec-
tronic Publishing, Artistic Imaging, and Digital
Typography, Lecture Notes in Computer Science.
Springer-Verlag.

S. Busemann and H. Horacek. 1998. A Flexi-
ble Shallow Approach to Text Generation. In
Proceedings of the 9th International Workshop
on Natural Language Generation, pages 238–247,
Niagara-on-the-Lake, Ontario.

Stephan Busemann. 1996. Best-first surface realiza-
tion. In Proceedings of the 8th International Nat-
ural Language Generation Workshop (INLG-96),
pages 101–110, Herstmonceux Castle, Sussex, UK.

Charles B. Callaway and James C. Lester. 1997. Dy-
namically Improving Explanations: A Revision-
Based Approach to Explanation Generation. In
Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, Nagoya,
Japan.

Alison Cawsey. 2000. Presenting tailored resource
descriptions: will XSLT do the job? In Proceed-

ings of the 9th International Conference on the
World Wide Web.

Sabine Geldof and W. Van de Velde. 1997. An archi-
tecture for template based hyper(text) generation.
In Proceedings of the 6th European Workshop on
Natural Language Generation, pages 28–37.

S. Gold and A. Rangarajan. 1996. A graduated
assignment algorithm for graph matching. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 18:377–388.

Philip Klein, Daniel Sharvit, and Ben Kimia. 2000.
A tree-edit-distance algorithm for comparing sim-
ple, closed shapes. In Proceedings, ACM-SIAM
Symposium on Discrete Algorithms (SODA) 2000.

Benoit Lavoie and Owen Rambow. 1997. RealPro
– A Fast, Portable Sentence Realizer. In Proceed-
ings of the Conference on Applied Natural Lan-
guage Processing (ANLP’97), Washington, DC.

William Mann and Sandra Thompson. 1988.
Rhetorical structure theory: Towards a functional
theory of text organisation. Text, 3:243–281.

C. Mellish, R. Evans, L. Cahill, C. Doran, D. Paiva,
M. Reape, D. Scott, and N. Tipper. 2000. A Rep-
resentation for Complex and Evolving Data De-
pendencies in Generation. In Proceedings of the
Conference on Applied Natural Language Process-
ing (ANLP-2000), Seattle.

E. Pianta and L. M. Tovena. 1999. Mixing represen-
tation levels: The hybrid approach to automatic
text generation. In Proceedings of the AISB’99
Workshop on Reference Architectures and Data
Standards for NLP, pages 8–13, Edinburgh, Scot-
land.

Owen Rambow and Tanya Korelsky. 1992. Applied
Text Generation. In Third Conference on Ap-
plied Natural Language Processing, pages 40–47,
Trento, Italy.

Ehud Reiter and Robert Dale. 2000. Building Nat-
ural Language Generation Systems. Cambridge
University Press.

Jacques Robin. 1994. Revision-Based Generation of
Natural Language Summaries Providing Historical
Background. Ph.D. thesis, Columbia University.

James Shaw. 1998. Segregatory coordination and
ellipsis in text generation. In Proceedings of
COLING-ACL ’98, pages 1220–1226, Montreal,
Canada.

W3C. 1999a. XML Path Language (XPath) Version
1.0. http://www.w3.org/TR/xpath.

W3C. 1999b. XSL Transformations (XSLT) Version
1.0. http://www.w3.org/TR/xslt.html.

W3C. 2000. Document Object Model (DOM)
Level 2 Core Specification Version 1.0.
http://www.w3.org/TR/DOM-Level-2-Core/.

Leo Wanner and Eduard Hovy. 1996. The Health-
Doc Sentence Planner. In Proceedings of the
Eighth International Natural Language Genera-

tion Workshop (INLG-96), pages 1–10, Herstmon-
ceux Castle, Sussex, UK.

Michael White and Ted Caldwell. 1998. Exem-
plars: A Practical, Extensible Framework for
Dynamic Text Generation. In Proceedings of the
9th International Workshop on Natural Language
Generation, pages 266–275, Niagara-on-the-Lake,
Ontario.

K. Zhang and D. Shasha. 1989. Simple Fast Algo-
rithms For The Editing Distance between Trees
and Related Problems. SIAM J. COMPUT.,
18(6):243–281.

